Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE-90

COURSE PLAN

Academic Year 2019-20

Program:	B E – CIVIL ENGINEERING
Semester :	5
Course Code:	17CV51
Course Title:	Design Of RC Structural Elements
Credit / L-T-P:	4 / 4-0-0
Total Contact Hours:	50
Course Plan Author:	VINOD M

Academic Evaluation and Monitoring Cell

#29, Hesaragatta Main Road, Chimney Hills Chikkabanavara Post Bangalore-560090 PH-080-23821488/23821315 www.Skit.org, Email: skitprinci1@gmail.com

Table of Contents

A. COURSE INFORMATION	3
1. Course Overview	
2. Course Content	
3. Course Material	4
4. Course Prerequisites	
5. Content for Placement, Profession, HE and GATE	
B. OBE PARAMETERS	5
1. Course Outcomes	
2. Course Applications	6
3. Mapping And Justification	6
4. Articulation Matrix	•
5. Curricular Gap and Content	8
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	9
1. Course Coverage	9
2. Continuous Internal Assessment (CIA)	9
D1. TEACHING PLAN - 1	
Module - 1	
Module – 2	
E1. CIA EXAM – 1	12
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	13
Module – 3	
Module – 4	14
E2. CIA EXAM – 2	15
a. Model Question Paper - 2	
b. Assignment – 2	15
D3. TEACHING PLAN - 3	
Module – 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
1. University Model Question Paper	
2. SEE Important Questions	
G. Content to Course Outcomes	
1. TLPA Parameters	
2. Concepts and Outcomes:	
	=0

Note : Remove "Table of Content" before including in CP Book Each Course Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	CIVIL ENGINEERING
Semester:	5	Academic Year:	2019-20
Course Title:	Design Of RC Structural Elements	Course Code:	15CV51
Credit / L-T-P:	4 / 4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50 Hours	SEE Marks:	60 Marks
CIA Marks:	40 Marks	Assignment	1 / Module
Course Plan Author:	VINOD M	Sign	
Checked By:	MOHAN K T	Sign	
CO Targets	65	SEE Target:	60

Note: Define CIA and SEE % targets based on previous performance.

2. Course Content

Content / Syllabus of the course as prescribed by University or designed by institute. Identify 2 concepts per module as in G.

Mod	Content	Teaching	Identified	Blooms
ule	Content	Hours	Module	Learning
uic		TIOUIS	Concepts	Levels
1	Introduction to working stress method, Difference between	10	Acceptable	L3
1	Working stress and Limit State Method, Difference between Working stress and Limit State Method of design, Modular	10	Limits of	Apply
	Ratio and Factor of Safety.		Safety and	Αρριγ
	Philosophy and principle of limit state design with		Serviceablity	
	assumptions. Partial Safety factors, Characteristic load and		Requirments	
	strength. Stress block parameters, concept of balanced		before failure,	
	section, under reinforced and over reinforced section.		Economy, Life	
	Limiting deflection, short term deflection, long term		of Span	
	deflection, Calculation of deflection of singly reinforced		or sparr	
	beam only. Cracking in reinforced concrete members,			
	calculation of crack width of singly reinforced beam. Side			
	face reinforcement, slender limits of beams for stability.			
	Analysis of singly reinforced, doubly reinforced and flanged	10	Beams, BM, SF	L4
	beams for flexure and shear	10	Dearns, Dri, Sr	Analysis
	Design of singly and doubly reinforced beams, Design of	10	Beams, BM, SF	L5
	flanged beams for shear, design for combined bending and			Design
	torsion as per IS-456			Doolgii
	Introduction to one way and two way slabs, Design of	10	Slabs,	L5
	cantilever, simply supported and one way continuous slab.		Staircase BM,	Design
	Design of two way slabs for different boundary conditions.		SF	200.9.1
	Design of dog legged and open well staircases. Importance			
	of bond, anchorage length and lap length.			
5	Analysis and design of short axially loaded RC column.	10	Columns,	L5
	Design of columns with uniaxial and biaxial moments, Design		Footing BM, SF	Design
	concepts of the footings. Design of Rectangular and square		<u> </u>	C
	column footings with axial load and also for axial load &			
	moment			
-	Total	50	-	-

3. Course Material

Books & other material as recommended by university (A, B) and additional resources used by course teacher (C).

1. Understanding: Concept simulation / video ; one per concept ; to understand the concepts ; 15 – 30 minutes

2. Design: Simulation and design tools used – software tools used ; Free / open source

3. Research: Recent developments on the concepts – publications in journals; conferences etc.

			A 11 1 111
Modul	Details	Chapters	Availability
es		in book	
A	Text books (Title, Authors, Edition, Publisher, Year.)	-	-
1,2,3,4,	B.S. Basavarajaiah, P.Mahadevappa "Strength of Materials" in SI	1,2,3,4,5	In Lib / In Dept
5	Units, University Press (India) Pvt. Ltd., 3rd Edition, 2010		
1,2,3,4,	Ferdinand P. Beer, E. Russell Johnston and Jr.John T. DeWolf	1,2,3,4,5	In Lib⁄ In dept
5	"Mechanics of Materials", Tata McGraw-Hill, Third Edition, SI Units		
	Reference books (Title, Authors, Edition, Publisher, Year.)	-	-
	D.H. Young, S.P. Timoshenko " Elements of Strength of Materials" East West Press Pvt. Ltd., 5th Edition (Reprint 2014).		In Lib⁄ In dep
	R K Bansal, "A Textbook of Strength of Materials", 4th Edition, Laxmi Publications, 2010		In Lib⁄ In dept
	S.S. Rattan " Strength of Materials" McGraw Hill Education (India) Pvt. Ltd., 2 Edition (Sixth reprint 2013).		In Lib⁄ In dept
	Vazirani, V N, Ratwani M M. and S K Duggal "Analysis of Structures Vol. I", 17nd thEdition, Khanna Publishers, New Delhi.		
С	Concept Videos or Simulation for Understanding	-	-
	 <u>http://nptel.ac.in/courses.php?disciplineID=111</u> <u>http://wwww.khanacademy.org/</u> 		
	<u>http://www.class-central.com/subject/strength</u>		
Е	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)		

4. Course Prerequisites

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Cturd a late la product la prus	Loowet the fallowing Course	and (Tapian with departies of Contant
Sludenis musi nave	learni lhe iollowind Cour	ses / Topics with described Content

oradone	Stadents mast have teame the following coalses 7 topies with described content						
Module	Course	Course Name	Topic / Description	Sem	Remarks	Blooms	
S	Code					Level	

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Mod ules	Topic / Description	Area	Remarks	Blooms
ules				Level
1				
3				
3				
5				
-				
-				

B. OBE PARAMETERS

1. Course Outcomes

Expected learning outcomes of the course, which will be mapped to POs. Identify a max of 2 Concepts per Module. Write 1 CO per Concept.

-	-	Total	10	-	-	-	L2-L4
4	17CV51.7	Students should be able to Design the Footings by using limit state method as per IS 456-2000		Footings, BM, SF	BB	IA Assignm entUnit Test	L5 Design
3	17CV51.6	Students should be able to Design the Columns by using limit state method as per IS 456-2000		Columns, BM, SF		IA Assignm entUnit Test	L5 Design
3	17CV51.5	Students should be able to Design the Staircase by using limit state method as per IS 456-2000		Staircase, BM, SF	BB	IA Assignm entUnit Test	L5 Design
2	17CV51.4	Students should be able to Design the Slabs by using limit state method as per IS 456-2000		Slabs, BM, SF	BB	IA Assignm entUnit Test	L5 Design
2	17CV51.3	Students should be able to Design the Beams by using limit state method as per IS 456-2000		Beams, BM, SF	BB	IA Assignm entUnit Test	L5 Design
1	17CV51.2	Students should be able to analyzing the Beams by using limit state method as per IS 456-2000		Beams, BM, SF	BB	IA Assignm entUnit Test	L4 Analysis
1	17CV51.1	Students should be able to understand the design philosophy and principles and apply the different loads on the structure by using limit state method as per IS 456-2000		Acceptable Limits of Safety and Serviceablity Requirments before failure, Economy, Life of Span	BB	IA Assignm entUnit Test	L3 Apply
ules	Code.#	At the end of the course, student should be able to	Hours	Concept	Metho	ent Method	Level
Mod		Course Outcome	Teach.	Concept	Instr	Assessm	Blooms'

2. Course Applications

Write 1 or 2 applications per CO.

Students should be able to employ / apply the course learnings to

Stude	she should be able to employ / apply the course tearnings to		
Mod	Application Area	CO	Level
ules	Compiled from Module Applications.		
	Select the suitable loads on the different Reinforced Cement Concrete structural Elements on the buildings	CO1	L3
2	Beams are used in Residential, Commercial, Educational and Office buildings	CO2	L4
3	Beams are used in Residential, Commercial, Educational and Office buildings	CO3	L5
4	Slabs are used in Residential, Commercial, Educational and Office buildings	CO4	L5
5	Staircase are used in Residential, Commercial, Educational and Office buildings	CO5	L5
6	Columns are used in Residential, Commercial, Educational and Office buildings	CO6	L5
4-504		بمبر مأمانيا ا	

Copyright ©2017. cAAS. All rights reserved.

7	7	Footings are used in Residential, Commercial, Educational and Office buildings	CO7	L5

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair. To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

					·
Mod ules	Мар	ping	Mapping Level	Justification for each CO-PO pair	Lev el
-	СО	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-
1	CO1	PO1	L2	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems. Different loads and loads combinations considered in the structures based on limit state method of design	
1	CO1	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex.	L2
1	CO1	PO3	L2	Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration	L2
2	CO2	PO1	L2	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems.	L3
2	CO2	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex. Analysis of the beam under the applied loads, BM, SF	L3
2	CO2	PO3	L5	Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration	L4
3	CO3	PO1	L5	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems.	
3	CO3	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex.	L2
3	CO3	PO3	L5	Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration Design the beam under the applied loads, BM, SF	L3
4	CO4	PO1	L5	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems.	L4
4	CO4	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex.	L2
4	CO4	PO3	L5	Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration Design the slabs under the applied loads, BM, SF	L2
5	CO5	PO1	L5	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems.	L2
5	CO5	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex.	L4
5	CO5	PO3	L5	Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate	L3

				consideration for the public health and safety, and the cultural, societal, and environmental consideration Design the staircase under the applied loads, BM, SF	
6	CO6	PO1	L5	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems.	L4
6	CO6	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex.	L3
6	CO6	PO3	L5	Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration Design the columns under the applied loads, BM, SF	L4
7	CO7	PO1	L5	Applies knowledge of mathematics, science & fundamentals Engineering specialization to the solution of complex engineering problems.	L3
7	CO7	PO2		Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Identify, formulate, review research literature and analyze complex.	L3
7	CO7	PO3		Design solutions for complex engineering problems and design system components. processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental consideration Design the footings under the applied loads, BM, SF	

4. Articulation Matrix

CO – PO Mapping with mapping level for each CO-PO pair, with course average attainment.

<u> </u>			-PO pair, with course average attainment. Program Outcomes															
-	-	Course Outcomes																-
Mod	CO.#		PO	PO		PO	PO				PO				-	PS		-
ules		student should be able to	1	2	3	4	5	6	7	8	9	10	11	12		02	03	el
1	15CV51.1	Student should be able to	9	3	3	-	-	-	-	-	-	-	-	-	L2			L3
		understand the basics of																
		surveying.																
1	15CV51.2	Student should be able to learn		3	3	-	-	-	-	-	-	-	-	-	L3			L4
		the techniques of survey																
		instruments.																
2	15CV51.3	Student should be able to determine the measurement of	3	3	3	-	-	-	-	-	-	-	-	-	L3			L5
		horizontal distances.																
2	15CV51.4	Student should be able to	2	3	3	_	_	_	_	_	_	_	_	_	L2			L5
2	150 \$ 51.4	understand the practical	-	3	S		_	_							LZ			L9
		applications of theodolite																
3	15CV51.5	1.1	3	3	3	_	_	-	-	-	-	_	-	-	L3		\rightarrow	L5
		understand the techniques of	U		5													-5
		compass survey																
3	15CV51.6	Student should be able to	3	3	3	-	-	-	-	-	-	-	-	-	L3			L5
		understand the methods of																
		tacheometry survey																
4	15CV51.7	Student should be able to		3	3	-	-	١	-	-	-	-	-	-	L5			L5
		Analise the different methods of																
		leveling using dumpy level																
5	15CV51.1	Student should be able to	- U	3	3	-	-	-	-	-	-	-	-	-				L3
		Analise the detailed calculations																
		of leveling by using dumpy																
	<u> </u>	level.																
5	15CV51.2	Student should be able to	5	3	3	-	-	-	-	-	-	-	-	-				L4
		determine the areas and volume																
-	450)/545	by using arithmetic equations.	-	-											1 -			1 -
5	15CV51.3	Student should be able to	U U	3	3	-	-	-	-	-	-	-	-	-	L5			L5
		understand the spatial data and																

		uses of contours.
-	15CV51.4	Average attainment (1, 2, or 3) 3 3 3
-	PO, PSO	1.Engineering Knowledge; 2.Problem Analysis; 3.Design / Development of Solutions;
		4.Conduct Investigations of Complex Problems; 5.Modern Tool Usage; 6.The Engineer and
		Society; 7.Environment and Sustainability; 8.Ethics; 9.Individual and Teamwork;
		10.Communication; 11.Project Management and Finance; 12.Life-long Learning;
		S1.Software Engineering; S2.Data Base Management; S3.Web Design

5. Curricular Gap and Content

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Mod ules	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

6. Content Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Mod ules	Gap Topic	Area	Actions Planned	Schedule Planned	Resources Person	PO Mapping

C. COURSE ASSESSMENT

1. Course Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

Mod	Title	Teachi		No. of question in Exam					CO	Levels
ules		ng	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
		Hours					Asg			
1	Introduction to Limit State Design	12	2	-	-	1	1	2	CO1	L3
	and Serviceability									
2	Limit State Analysis of Beams	08	2	-	-	1	1	2	CO2	L4
3	Limit State Design of Beams	10	-	2	-	1	1	2	CO3	L5
4	Limit State Design of Slabs and	10	-	2	-	1	1	2	CO4 C05	L5
	Stairs									
5	Limit State Deign of Columns and	10	-	-	4	1	1	2	CO6 CO7	L5
	Footings									
-	Total	50	4	4	4	5	5	10	-	-

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weighta ge in Marks	CO	Levels	Evaluation
CIA Exam – 1	30	CO1 , CO2	L3, L4	CIA Exam – 1

CIA Exam – 2	30	CO3,CO4,CO5	L5	CIA Exam – 2
CIA Exam – 3	30	CO6,CO7	L5	CIA Exam – 3
Assignment - 1	05	CO1 , CO2	L3, L4	Assignment - 1
Assignment - 2	05	CO3,CO4,CO5	L5	Assignment - 2
Assignment - 3	05	CO6,CO7	L5	Assignment - 3
Other Activities		CO1 to Co9	Other Activities	
– define – Slip			– define – Slip	
test			test	
Final CIA Marks	40	-	-	

D1. TEACHING PLAN - 1

Module - 1

Title:	Introduction to Limit State Design and Serviceability	Appr Time:	12Hrs
а	Course Outcomes	_	Blooms
-	The student should be able to:	-	Level
1	Students should be able to understand the design philosophy and principles and apply the different loads on the structure by using limit state method as per IS 456-2000	CO1	L3
b	Course Schedule	_	-
lass No	Module Content Covered	СО	Level
1	Introduction to RCC	C01	L1
2	Introduction to working stress method and Limit State Method of design	C01	L2
3	Difference between Working stress and Limit State Method of design	C01	L3
4	Modular Ratio and Factor of Safety.	C01	L3
5	Philosophy and principle of limit state design with assumptions. Partial Safety factors and Characteristic load and strength	C01	L3
6	Stress block parameters, concept of balanced section, under reinforced and over reinforced section.	C01	L3
7	Limiting deflection, short term deflection, long term deflection	C01	L3
8	Calculation of deflection of singly reinforced beam	C01	L3
9	Cracking in reinforced concrete members	C01	L3
10	calculation of crack width of singly reinforced beam	C01	L3
11	Side face reinforcement	C01	L3
12	slender limits of beams for stability	C01	L3
с	Application Areas	со	Level
1	Select the suitable loads on the different structural elements on the buildings	CO1	L3
d	Review Questions	_	
1	Explain working stress method, limit state method of RCC design	C01	L2
2	Distinguish between balanced, under reinforced and over reinforced section of RCC design.	C01	L3
3	Derive the expression for depth of NA y $-$ = 0.42x u , in the case of rectangular RCC beam design.	C01	L3
4	Obtain an expression for limiting percentage of steel for a rectangular RCC section with M20 concrete and Fe500 steel.	C01	L3
5	Enlist the reasons for adopting partial safety factors for loads and material strength.		L3
6	Briefly explain singly and doubly reinforced RCC beam. Enlist the situations where doubly reinforced RCC beam adaptation required.	C01	L3

7	Explain different limit states to be considered in the design of RCC beam and	C01	L3
	derive the expression for stress block parameter.		
8	Explain short term and long term deflections.	C01	L3
9	Dfferentiate between working stress method and limit state method of RCC	C01	L3
	design.		

Module – 2

Title:	Limit State Analysis of Beams	Appr Time:	10 Hrs
a	Course Outcomes	08	Blooms
-	The student should be able to:	-	Level
1	Students should be able to analyzing the Beams by using limit state method as per IS 456-2000	CO2	L4
b	Course Schedule	-	-
Class No	Module Content Covered	СО	Level
13	Introduction to singly reinforced, doubly reinforced and flanged beams	CO2	L2
14	Analysis of singly reinforced beams for flexure and shear	CO2	L4
15	Analysis of singly reinforced beams for flexure and shear	CO2	L4
16	Analysis of doubly reinforced beams for flexure and shear	CO2	L4
17	Analysis of doubly reinforced beams for flexure and shear	CO2	L4
18	Analysis of flanged beams for flexure and shear	CO2	L4
19	Analysis of flanged beams for flexure and shear	CO2	L4
20	Analysis of flanged beams for flexure and shear	CO2	L4
		CO2	L4
с	Application Areas	СО	Level
1	Beams are used in Residential, Commercial, Educational and Office buildings	CO2	L4
d	Review Questions	-	-
12	A singly RCC beam of dimensions 230x500 mm overall, simply supported over a span of 5 m (effective). The beam consists of 4 # 16mm diameter bars in tension zone use M20 and Fe-415 grade. Calculate the UDL the beam can carry. Take clear cover 25 mm.	CO2	L4
13	Determine the moment of resistance of the T-beam having following section properties: Effective width of flange = 1100 mm Thickness of flange= 110 mm Width of rib = 250 mm Effective depth = 450 mm Area of steel = 5 # 20 mm diameter. Use M-25 grade concrete and Fe-415 grade steel.	CO2	L4
14	simply supported beam of rectangular section spanning over 6m has a width of 300mm and overall depth 600mm. The beam is reinforced with 4-25mm bars on tension side. The beam is subjected to moment of 160kNm. Check the beam for serviceability limit state of cracking. Assume M25 and Fe415.	CO2	L4
15	simply supported beam of rectangular section 250mm wide by 450mm overall depth is used over an effective span of 4m. the beam is reinforced with 3 bars of 20mm. Two hanger bars of 10mm diameter are provided. The self weight of the beam is 4kN/m and service loadis 10kN/m. Assume M20, Fe415. Compute: i) Short term deflection; ii) Long term deflection.		L4
16	Define simply and doubly reinforced beams, list the situations when they are adopted.	CO2	L4
17	Determine moment of resistance of T-beam for the following data: Width of the flange = 2500mm, effective depth = 800mm, width of the web =	CO2	L4

	300mm, number of bars = 8 of 25mm diameter, depth of flange = 150mm. Assume M20 and Fe415 steel.		
18	simply reinforced concrete beam 250 x 450mm deep upto the centre of reinforcement is reinforced with 3-16mm bars with an effective cover of 50mm. The effective span of the beam is 6m. Determine the central point load that the beam can carry excluding self weight. Assume M7.0 and Fe415.		L4
19	A doubly reinforced beam is 250mm wide and 450mm deep to the centre of tensile reinforcement. It is reinforced with 2-16 compression reinforcement and 4-25 as tensile reinforcement. Calculate the ultimate moment of resistance of the beam. Assume M15 and Fe250 steel		L4
e	Experiences	_	
		CO1	-
2		001	L2

E1. CIA EXAM – 1

a. Model Question Paper - 1

		:15CV51	Sem:	V	Marks:	40	Time:	75 minute	S	
Cour	rse:	Design Of F								1
-	-		ver any ON	E FULL q	uestion from eac	h Module		Marks	CO	Level
1	а	Define Limit state Limit state Characteris Characteris Partial safe	of service stic streng stic load	ability				05	CO1	L1, L2
	b	centre of te position of the safe mo Fe415Grade	ension stee netural ax oment of r e. Adopt lii	el Consisté is, lever ai esistance mit state r	s of 4no of 22m rm, compressiv . if concrete is I method and als	m diamet e force, te M20 and s o find wh	deep up to the er bars. Find th ensile force an steel is at concentrated ctive span of 6m	e d 10	CO1	L2, L3
2	а				s block parame depth from top		compressive for	ce 05	CO1	L1, L2
	b	weight on a 230mm & e	a effective effective d	cantileve epth of 56	r span of 3mts.	The bean 5 of 12mm	n dia bars. Used	10	CO1	L2, L3
3	а	230mm wid placed on d	de and 450 compressi sts of 3nos	omm effection side w		s of 20mr cover of ₄		06	CO2	L2, L4
	b	250mm & e grade of co resistance	effective d oncrete an , span of s	epth is 60 d Fe415 si imply sup	Omm. Tension s teel. Compute ported beam is	steel is 20 the ultima 8m. Also	nm width of rib i 000mm². Use M ate moment of 0 calculated the 1/e cover is 50m	20 09	CO2	L2, L4
4	а	8nos of 250 cover to ter respectivel ultimate m	dia bars (tw nsion stee .y. Use M2: oment. Als	vo layers) l and com 5grade of so calcula	and Asc= 4nos pression steel i concrete and F	of 25dia k s 75mm & e415 stee orking loa	& 50mm el. Compute ad if c/s is used	06	CO2	L2, L4

	b	Determine ultimate moment for a flanged section , centre to centre distance b/w beams is 3500mmc/c, thickness of flange is 125mm, width of rib is 300mm, depth of rib is 600mm, effective cover is 75mm. Ast= 8nos of 25dia bars (two layers) Use M25 grade of concrete and Fe500 steel. If the above c/s is used over a clear span of 9m supported by a wall of 250mm thickness. Calculate the safe super imposed Load on the beam.	09	CO2	L2, L4
-	-	Note: Answer any ONE FULL question from each Module	Marks	СО	Level
1	a	Define Limit state of collapse Limit state of serviceability Characteristic strength Characteristic load Partial safety factor	05	CO1	L1, L2
	b	A Rectangular beam section 250mm wide and 500mm deep up to the centre of tension steel Consists of 4no of 22mm diameter bars. Find the position of netural axis, lever arm, compressive force, tensile force and the safe moment of resistance . if concrete is M20 and steel is Fe415Grade. Adopt limit state method and also find what concentrated load it can carry of mid span of this beam have an effective span of 6mts.	10	CO1	L2, L3

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

Model Assi	gnment Qı	uestions	

		15CV51	Sem:	V	Marks:	10	Time:	90 - 120	minute	S
Cours				ictural Elen			1	-		
Note:	Each	n student	to answe	r 2-3 assigr	nments. Each ass	ignment ca	arries equa <mark>l m</mark> a			
SNo		USN			Assignment Des			Marks	СО	Level
1			Explain design	working st	ress method, lir	mit state n	nethod of RC	C 5	CO1	L2
2					en balanced, ur of RCC design.	nder reinfo	rced and ov	er 5	CO2	L3
3					ion for depth of RCC beam desig		0.42x u , in tł	ne	CO2	L3
4					ion for limiting ction with M20 c				CO1	L3
5				e reasons f erial streng	for adopting part th.	ial safety f	actors for load	ds 5	CO1	L2
6				tions wher	ly and doubly re e doubly reinfor				CO2	L3
7				am and	nit states to be c derive the exp				CO2	L3
8			Explain s	short term a	and long term de	flections.		5	CO1	L3
9				ate betwee of RCC des	en working stres sign.	ss method	and limit sta	te 5	CO1	L2
10			ii)Charac	afety facto teristic load cteristic str		aterials.		5	CO2	L3
11			compres	ive force c	ession for stree i tens i le force xu from top of th	Fu and loca			CO2	L3
12				oriefly unde with sketcl	er reinforced, ove h.	er reinforce	d and balance	ed 5	CO1	L3

	COOKSET EAR OAT 2019 20			
13	Explain briefly under reinforced, over reinforced and balanced sections with sketch.	5	CO1	L2
14	A singly RCC beam of dimensions 230x500 mm overall, simply supported over a span of 5 m (effective). The beam consists of 4 # 16mm diameter bars in tension zone use M20 and Fe-415 grade. Calculate the UDL the beam can carry. Take clear cover 25 mm.	5	CO2	L3
15	Determine the moment of resistance of the T-beam having following section properties: Effective width of flange = 1100 mm Thickness of flange = 110 mm Width of rib = 250 mm Effective depth = 450 mm Area of steel = 5 # 20 mm diameter. Use M-25 grade concrete and Fe-415 grade steel.	5	CO2	L3
16	simply supported beam of rectangular section spanning over 6m has a width of 300mm and overall depth 600mm. The beam is reinforced with 4-25mm bars on tension side. The beam is subjected to moment of 160kNm. Check the beam for serviceability limit state of cracking. Assume M25 and Fe415.	5	CO1	L3
17	simply supported beam of rectangular section 250mm wide by 450mm overall depth is used over an effective span of 4m. the beam is reinforced with 3 bars of 20mm. Two hanger bars of 10mm diameter are provided. The self weight of the beam is 4kN/m and service load is 10kN/m. Assume M20, Fe415. Compute: i) Short term deflection; ii) Long term deflection.	5	CO1	L2
18	Define simply and doubly reinforced beams, list the situations when they are adopted.	5	CO2	L3
19	Determine moment of resistance of T-beam for the following data: Width of the flange = 2500mm, effective depth = 800mm, width of the web = 300mm, number of bars = 8 of 25mm diameter, depth of flange = 150mm. Assume M20 and Fe415 steel.	5	CO2	L3
20	simply reinforced concrete beam 250 x 450mm deep upto the centre of reinforcement is reinforced with 3-16mm bars with an effective cover of 50mm. The effective span of the beam is 6m. Determine the central point load that the beam can carry excluding self weight. Assume M7.0 and Fe415.	5	CO2	L3
21	A doubly reinforced beam is 250mm wide and 450mm deep to the centre of tensile reinforcement. It is reinforced with 2-16 compression reinforcement and 4-25 as tensile reinforcement. Calculate the ultimate moment of resistance of the beam. Assume M15 and Fe250 steel	5	CO2	L3
22				
23				
24				
25				
26				
27				

D2. TEACHING PLAN - 2

Module – 3

Title:	Limit State Design of Beams	Appr	10Hrs
		Time:	
a	Course Outcomes	-	Blooms
_	The student should be able to:	-	Level

1	Students should be able to Design the Beams by using limit state method as per IS 456-2000	CO3	L5
b	Course Schedule		
Class No	Module Content Covered	СО	Level
1	Introduction to singly reinforced,	CO3	L5
2	Design of singly reinforced beams for shear	CO3	L5
3	Design of singly reinforced beams for shear	CO3	L5
4	Introduction to doubly reinforced beams	CO3	L5
5	Design of doubly reinforced beams for shear	CO3	L5
6	Design of doubly reinforced beams for shear	CO3	L5
7	Introduction to flanged beams	CO3	 L5
8	Design of flanged reinforced beams for shear	CO3	 L5
9	Design of flanged reinforced beams for shear	CO3	
 10	Design for combined bending and torsion as per IS-456	CO3	
10	Design for combined bending and torsion as per 13-450	003	<u>_</u> _
С	Application Areas	со	Leve
1	Beams are used in Residential, Commercial, Educational and Office buildings	CO3	L5
d	Review Questions	_	-
1	Design a reinforced concrete beam of rectangular section using the following data: Effective span = 5m, width of the beam — 250mm, overall depth = 500mm,		L5
2	T beam slab floor of an office comprises of a slab 150mm thick resting on beams 3m c/c. The effective span of beam is 8m. Assume live load on the floor as 4kN/m2. Use M20 an dFe415. Design one of the intermediate f beams.		L5
3	reinforced concrete beam over an effective span 5m carries a load of 8kN/m inclusive of self weight. Assume M20 and Fe415. Design the beam to satisfy the collapse and serviceability limit states		L5
4	A cantilever beam of 4m span carries a load of 401(N/m. The width of the beam is 230mm. Design the beam for flexure and shear. Sketch the details of reinforcement. Assume M20		L5
5	A Rectangular beam is to be simply supported on supports of 230 mm width. The clear span of the beam is 6m. The beam is to have width of 300 mm. The super imposed load is 12 IcNini. Using M20 concrete and Fe415 steel. Design the beam. Apply check for deflection.		L5
6	Design a rectangular beam of section 230 mm x 600 mm of effective span 6m. Effective cover of reinforcement should be kept as 50 mm. Imposed load on the beam is 40 kN/m. Use M20 concrete and Fe 415 steel.		L5
7	simply supported RCC beam of size 300 x 600 mm carries a udl live load of 250 kN/m and superimposed dead load 12 kN/m over an effective span of 5 m. It is reinforced with 4#16 mm diameter bars. The effective cover is 50 mm calculate the short term and long term deflection of beam tcs = 0.003 and creep coefficient = 1.6.		L5
8	A R.C.C beam of rectangular section 300x600mm is reinforced with 4 bars of 20mm dia with an effective cover 50mm, effective span of the beam is 6m. Assuming M20 concrete and Fe250 steel. Determine the central concentrated P, that can be carried by the beam in addition to its self weight.		L5
9	A rectangular simply supported beam of span 5m is 300mmx650mm in cross section and is reinforced with 3 bars of 20mm on tension side at an effective cover of 50mm. Determine the shaft term defection due to an imposed working load of 201.1\L/m (excluding self wt). Assume grade of concrete M20 and grade of steel Fe415.		L5
	A T-Beam slab floor has 125mm thick slab forming part of T — beam which are of 8m clearspan. The end bearing are 450mm thick. Spacing of T-beams is $3.5m$. The live load on the floor is $3kN/m2$. Design one of the intermediate	_	L5

	beams. Use M20 concrete and Fe415 steel.		
е	Experiences		
		-	-

Module – 4

Title:	Limit State Design of Slabs and Stairs	Appr Time:	10Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Students should be able to Design the Slabs by using limit state method as	CO4	L5
	per IS 456-2000		
2	Students should be able to Design the Staircase by using limit state method as per IS 456-2000	CO5	L5
b	Course Schedule		
	Module Content Covered	со	Level
1	Introduction to one way and two way slabs,	CO4	L5
T	Design of one way slab	004	L.5
2	Design of two way slabs for different boundary conditions	CO4	L5
3	Design of two way slabs for different boundary conditions	CO4	L5
4	Design of two way slabs for different boundary conditions	CO4	
5	Design of one way continuous slab	CO4	L5
6	Introduction to dog legged and open well staircases.	CO5	
7	Design of dog legged staircases	CO5	 L5
8	Design of dog legged staircases	CO5	
9	Design of open well staircases	CO5	L5
10	Design of open well staircases	CO5	L5
С	Application Areas	со	Level
1	Slabs are used in Residential, Commercial, Educational and Office buildings	CO4	L5
2	Staircase are used in Residential, Commercial, Educational and Office buildings	CO5	L5
d	Review Questions		
 1	Distinguish between one way slab and two way slab.	CO4	L2
2	Explain the importance of bond, anchorage length.	004	
3	Design a two way slab for an office floor of 3.5 x 4.5m simply supported on all sides with ',corners prevented from lifting. Take live load of 4kN/m2. Assume M20 and Fe415.		L5
4	What is development length? Write the expression for development length,	CO4	L5
5	Design one of the flights of dog logged stair case spanning between landing beams using the following dataNumber of steps in the flight = 10= 300mm Tread = 150mm Rise Width of landing beams= 300mm Assume M20 and Fe415		L5
6	Design a continuous RC slab for a class room 7m wide and 14 m long. The roof is to be supported on RCC beams spaced at 3.5 m intervals. The width of beam should be kept 230 mm. The super imposed load is 3 kN/m2 and furnishing load expected is 1 kN/m2. Use M20 concrete and Fe415 steel.		L5

7	Design a dog legged stairs for an office building in a room measuring 2.8m * 5.8 m clear. Vertical distance between the floor is 3 6in. Width of flight is to be 1.25 m. Allow a live load of 3 kN/m2. Sketch the details of reinforcement. Use M20 concrete and Fe 415 steel. Assume the stairs are supported on 230 mm walls		L5
	at the end of outer edges of landing slabs		
8	Design a waist 4b type dog legged staircase for an office building given the following data Clear dither** of room = 2.6 m x 4.75 m Height of 000 = 3.2 m Rise = 160mm, Tread = 250 mm Width, of flight = 1.25 m Use M-20 grade concrete and Fe-415 grade steel. Landing slab spans in the same direction of the staircase. Assume wall thickness 230 mm. Take live load		L5
9	 = 3 kN/m2 and floor finish = 1 kN/m2. Design a corner rectangular slab panel of size 4m x 5.5m. Assume that slab supports an imposed load of 3 kN/m2 and floor finish 1 IN/m2. The slab is subjected to moderate exposure condition and is made of M-25 grade concrete, Fe-415 grade steel. Wall support is 230 mm. 		L5
10	Design a slab for a room of clear dimensions 3mx5m supported on wall of 300mm thickness with corners held down. Two adjacent sides of the slab are continuous and other discontinuous. LL on slab is 3kN/m2 . Assume floor finish of lkN/m2 . Use M20 concrete and Fe415 steel. Sketch the details of reinforcement.	-	L5
11	Design a dog-legged stairs for an building in a room measuring 3.6x5.2m clear. The vertical distance between the Floors is 3.2m. Consider LL 3kN/m2 . Use M20 concrete and Fe415 grade of steel. Assume stairs are supported on 300mm wall at the outer edges of landing slabs. Consider Rise = 160mm, and Tread 300mm.		L5
	Evnorianaas		
е	Experiences	-	-

E2. CIA EXAM – 2

a. Model Question Paper - 2

Crs (Code:	15CV51	Sem:	V	Marks:	40	Time:	75 I	minute	S	
Cou	rse:	Design C	of RC Struct	tural Eleme	ents						
-	-	Note: Answer any ONE FULL question from each Module								СО	Level
1	a	Define or	ne way slak	and Two	way slab.				03	CO4	L1
	b	230mm t corners a 1kn/m².	hick brick v are prevent	wall. All the ed from lif e is M20 ar	e four edges ar	e discont oad 3kn/	m supported o inuous. (All the ′m². Floor finish ketch the	four	12	CO4	L5
2	а	Distingui	sh betweei	n one way	slab and two v	vay slab v	vith neat sketch	٦.	03	CO4	L1
	b	beams o load on s	f 230mm w slab 3kn/r	ridth. Two a n². Floor	adjacent edges	s are disc If concre	5.5m supporte ontinuous. Use ete is M20 and s	live	12	CO4	L5
3	а	Define D	og-legged	staircase a	and open-well	staircase			03	CO5	L1,

	b	Design a dog legged staircase for a public building. Given the following data. Clear dimensions of staircase hall is 3m×5m, Height between the floors= 3.5m, Rise =150mm, Tread =280mm ,Width of flight = landing width =1.45m Assume the stairs to be supported on 230mm thick masonry wall at the outer edges of the landings, Parallel to rises. Use M 20 concrete & Fe 415 steel. Sketch the details of reinforcement.	12	CO5	L5
4	a	Distinguish between Dog-legged staircase and open-well staircase with neat sketch.	03	CO5	L1
	b	Design an open well staircase for a public building. The staircase room has clear dimensions of 6000×4500mm. The height between the floors is 4500 mm. The stairs are supported at the outer edges of the landing parallel to the rises. Use M 25 concrete & Fe 500 steel. Sketch the details of reinforcement. wall thickness 230mm	12	CO5	L5

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

	Aus				del Assignmen		ons			
Crs C	ode:	15CV51	Sem:	V	Marks	10	1	90 - 120	minute	S
Cours			of RC Struct	ural Elem				<u> </u>		
Note:	Each	student	to answer 2	2-3 assignr	nents. Each ass	signmen	t carries equal ma	ark.		
SNo		USN			ssignment Des			Marks	CO	Level
1			using the	following		span =	ectangular sectio 5m, width of th		CO3	L5
2			resting on Assume liv	beams 3r /e load on		ective sp N/m2. U			CO3	L5
3			load of 81	<n inc<br="" m="">esign the</n>	lusive of self beam to s	weight.	span 5m carries Assume M20 ar he collapse ar	d	CO3	L5
4			width of th	ie beam is		n the be	d of 401(N/m. Th eam for flexure an ssume M20		CO3	L5
5			230 mm w of the bea super imp	idth. The c m is 6m. T osed load	lear span he beam is to I	nave wic Using N	ted on supports of th of 300 mm. Th M20 concrete ar for deflection.	e	CO3	L5
6			Design a r effective s kept as 50	ectangula pan 6m. E mm. Imp	r beam of sect ffective cover o	tion 230 of reinfoi	mm x 600 mm (rcement should b n is 40 kN/m. Us	e	CO3	L5
7			udl live lo kN/m ove 4#16 mm calculate t	ad of 250 r an effecti diameter he short te	kN/m and su ive span of 5 m r bars. The e	iperimpo . It is rein ffective	600 mm carries osed dead load : forced with cover is 50 mi ection of beam to	ı2 m	CO3	L5
8			A R.C.C be with 4 ba	am of rect rs of 20r	angular sectior	an effec	00mm is reinforce tive cover 50mr M20 concrete		CO3	L5

Page # 17 / 26

	and Fe250 steel. Determine the central concentrated P, that can be carried by the beam in addition to its self weight.			
9	A rectangular simply supported beam of span 5m is 300mmx650mm in cross section and is reinforced with 3 bars of 20mm on tension side at an effective cover of 50mm. Determine the shaft term defection due to an imposed working load of 201.1\L/m (excluding self wt). Assume grade of concrete M20 and grade of steel Fe415.	5	CO3	L5
10	A T-Beam slab floor has 125mm thick slab forming part of T — beam which are of 8m clear span. The end bearing are 450mm thick. Spacing of T-beams is 3.5m. The live load on the floor is 3kN/m2. Design one of the intermediate beams. Use M20 concrete and Fe415 steel.	5	CO3	L5
11	Distinguish between one way slab and two way slab.	5	CO3	L2
12	Explain the importance of bond, anchorage length.	5	CO3	L2
13	Design a two way slab for an office floor of 3.5 x 4.5m simply supported on all sides with ',corners prevented from lifting. Take live load of 4kN/m2. Assume M20 and Fe415.			
14	What is development length? Write the expression for development length,	5	CO4	L3
15	Design one of the flights of dog logged stair case spanning between landing beams using the following data: Number of steps in the flight = 10 = 300mm Tread = 150mm Rise Width of landing beams= 300mm Assume M20 and Fe415	5	CO4	L5
16	Design a continuous RC slab for a class room 7m wide and 14 m long. The roof is to be supported on RCC beams spaced at 3.5 m intervals. The width of beam should be kept 230 mm. The super imposed load is 3 kN/m2 and furnishing load expected is 1 kN/m2. Use M20 concrete and Fe415 steel.	5	CO4	L5
17	Design a dog legged stairs for an office building in a room measuring 2.8m [*] 5.8 m clear. Vertical distance between the floor is 3 6in. Width of flight is to be 1.25 m. Allow a live load of 3 kN/m2. Sketch the details of reinforcement. Use M20 concrete and Fe 415 steel. Assume the stairs are supported on 230 mm walls at the end of outer edges of landing slabs	5	CO4	L5
18	Design a waist 4b type dog legged staircase for an office building given the following data Clear dither** of room = 2.6 m x 4.75 m Height of 000 = 3.2 m Rise = 160mm, Tread = 250 mm Width, of flight = 1.25 m Use M-20 -20 grade concrete and Fe-415 grade steel. Landing slab spans in the same direction of the staircase. Assume wall thickness 230 mm. Take live load = 3 kN/m2 and floor finish = 1 kN/m2.	5	CO4	L5
19	Design a corner rectangular slab panel of size 4m x 5.5m. Assume that slab supports an imposed load of 3 kN/m2 and floor finish 1 IN/m2. The slab is subjected to moderate exposure condition and is made of M-25 grade concrete, Fe- 415 grade steel. Wall support is 230 mm.	5	CO4	L5

20	Design a slab for a room of clear dimens supported on wall of 300mm thickness with corners held down. Two adjacent sides of continuous and other discontinuous. LL on slab is 3kN/m2 . Assume lkN/m2 . Use M20 concrete and Fe415 steel. Sketch the details of reinforcement.	f the slab are	CO4	L5
21	Design a dog-legged stairs for an building measuring 3.6x5.2m clear. The vertical distance Floors is 3.2m. Consider LL 3kN/m2 . Use M20 Fe415 grade of steel. Assume stairs are supporte wall at the outer edges of landing slabs. Consider Rise = 160mm, and Tread 300	between the concrete and ed on 300mm	CO4	L5

D3. TEACHING PLAN - 3

Module – 5

- The student should be able to: - Leve 1 Students should be able to Design the Columns by using limit state method as CO6 L5 per IS 456-2000 CO7 L5 2 Students should be able to Design the Footings by using limit state method as CO7 L5 per IS 456-2000 CO Leve 2 Students Should be able to Design the Footings by using limit state method as CO7 L5 per IS 456-2000 CO Leve 1 Introduction to columns and design of short axially loaded RC column CO6 2 Design of columns with uniaxial moments CO6 L5 3 Design of columns with uniaxial moments CO6 L5 4 Design of columns with biaxial moments CO6 L5 5 Design of Rectangular column footings with axial load and moment CO7 L5 6 Introduction to footings and types, design concepts of the footings. CO7 L5 9 Design of Rectangular column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footin	Title:	Limit State Deign of Columns and Footings	Appr	10Hrs
- The student should be able to: - Leve 1 Students should be able to Design the Columns by using limit state method as CO6 L5 per IS 456-2000 CO7 L5 2 Students should be able to Design the Footings by using limit state method as CO7 L5 per IS 456-2000 CO Leve 2 Students should be able to Design the Footings by using limit state method as CO7 L5 per IS 456-2000 CO Leve 1 Introduction to columns and design of short axially loaded RC column CO6 2 Design of columns with uniaxial moments CO6 L5 3 Design of columns with uniaxial moments CO6 L5 4 Design of columns with biaxial moments CO6 L5 5 Design of Rectangular column footings with axial load and moment CO7 L5 7 Design of Rectangular column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 9 Design of square column footings with ax			Time:	
1 Students should be able to Design the Columns by using limit state method as per IS 456-2000 CO6 L5 2 Students should be able to Design the Footings by using limit state method as per IS 456-2000 CO7 L5 b Course Schedule CO Leve class No Module Content Covered CO Leve 1 Introduction to columns and design of short axially loaded RC column CO6 L5 2 Design of columns with uniaxial moments CO6 L5 3 Design of columns with biaxial moments CO6 L5 4 Design of columns with biaxial moments CO6 L5 5 Design of columns with biaxial moments CO6 L5 6 Introduction to footings and types, design concepts of the footings. CO7 L5 7 Design of Rectangular column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 2 Foot	а		-	Blooms
per IS 456-2000 CO L5 2 Students should be able to Design the Footings by using limit state method as CO7 L5 per IS 456-2000 CO Leve 2 Course Schedule CO Leve 1 Introduction to columns and design of short axially loaded RC column CO6 L5 2 Design of columns with uniaxial moments CO6 L5 3 Design of columns with biaxial moments CO6 L5 4 Design of columns with biaxial moments CO6 L5 5 Design of Rectangular column footings with axial load and moment CO7 L5 7 Design of Rectangular column footings with axial load and moment CO7 L5 8 Design of square column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5	-	The student should be able to:	-	Level
per IS 456-2000 Course Schedule Class No Module Content Covered CO Leve Introduction to columns and design of short axially loaded RC column CO6 L5 Design of columns with uniaxial moments CO6 J Design of columns with uniaxial moments CO6 J Design of columns with biaxial moments CO6 J Design of Rectangular column footings with axial load and moment CO7 J Design of Rectangular column footings with axial load and moment CO7 J Design of square column footings with axial load and moment CO7 L5 Design of square column footings with axial load and moment CO7 L5 Design of square column footings with axial load and moment CO7 L5 Design of square column footings with axial load and moment CO7 L5 Design of square column footings CO7 L5 Design of square column foo	1		CO6	L5
Class NoModule Content CoveredCOLeve1Introduction to columns and design of short axially loaded RC columnCO6L52Design of columns with uniaxial momentsCO6L53Design of columns with uniaxial momentsCO6L54Design of columns with biaxial momentsCO6L55Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L59Design of Rectangular column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO6L31What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why isCO6L3	2		CO7	L5
1Introduction to columns and design of short axially loaded RC columnCO6L52Design of columns with uniaxial momentsCO6L53Design of columns with uniaxial momentsCO6L54Design of columns with biaxial momentsCO6L55Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L58Design of square column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO6L31What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why isCO6L33Explain the different between short columns and long columns. Why isCO6L3	b	Course Schedule		
1Introduction to columns and design of short axially loaded RC columnCO6L52Design of columns with uniaxial momentsCO6L53Design of columns with uniaxial momentsCO6L54Design of columns with biaxial momentsCO6L55Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L58Design of square column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO6L31What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why isCO6L3	Class No		со	Level
2Design of columns with uniaxial momentsCO6L53Design of columns with uniaxial momentsCO6L54Design of columns with biaxial momentsCO6L55Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L58Design of Rectangular column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential. Commercial, Educational and Office buildingsCO6L52Footings are used in Residential. Commercial, Educational and Office buildingsCO6L31What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is co6L3L3	1	Introduction to columns and design of short axially loaded RC column		
3Design of columns with uniaxial momentsCO6L54Design of columns with biaxial momentsCO6L55Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L58Design of Rectangular column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO6L31What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?L3				
5Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L58Design of Rectangular column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L51What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why isCO6L3				
5Design of columns with biaxial momentsCO6L56Introduction to footings and types, design concepts of the footings.CO7L57Design of Rectangular column footings with axial load and momentCO7L58Design of Rectangular column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L51What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why isCO6L3	4	Design of columns with biaxial moments	C06	L5
6 Introduction to footings and types, design concepts of the footings. CO7 L5 7 Design of Rectangular column footings with axial load and moment CO7 L5 8 Design of Rectangular column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 1 Columns are used in Residential, Commercial, Educational and Office buildings CO6 L5 2 Footings are used in Residential, Commercial, Educational and Office buildings CO6 L3 1 What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement? CO6 <td< td=""><td></td><td></td><td>CO6</td><td></td></td<>			CO6	
7Design of Rectangular column footings with axial load and momentCO7L58Design of Rectangular column footings with axial load and momentCO7L59Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Design of square column footings with axial load and momentCO7L512Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L51What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why isCO6L3		•	CO7	
8 Design of Rectangular column footings with axial load and moment CO7 L5 9 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 10 Design of square column footings with axial load and moment CO7 L5 1 Columns are used in Residential, Commercial, Educational and Office buildings CO6 L5 2 Footings are used in Residential, Commercial, Educational and Office buildings CO7 L5 1 What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement? - - 2 Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details. CO6 L3 3 </td <td>7</td> <td></td> <td>CO7</td> <td></td>	7		CO7	
9Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L510Design of square column footings with axial load and momentCO7L511Columns are used in Residential, Commercial, Educational and Office buildingsCO6Leve1Columns are used in Residential, Commercial, Educational and Office buildingsCO7L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L51What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?2Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?CO6L3			CO7	
10Design of square column footings with axial load and momentCO7L5cApplication AreasCOLeve1Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L54Review Questions1What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?CO6L3	9		CO7	L5
1Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L5dReview Questions1What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?L3		Design of square column footings with axial load and moment	C07	
1Columns are used in Residential, Commercial, Educational and Office buildingsCO6L52Footings are used in Residential, Commercial, Educational and Office buildingsCO7L5dReview Questions1What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?L3	-	Application Areas	<u> </u>	Loval
2 Footings are used in Residential, Commercial, Educational and Office buildings CO7 L5 d Review Questions - - 1 What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement? CO6 L3 2 Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details. CO6 L3 3 Explain the different between short columns and long columns. Why is CO6 L3				
d Review Questions - - 1 What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement? CO6 L3 2 Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details. CO6 L3 3 Explain the different between short columns and long columns. Why is CO6 L3	1	Columns are used in Residential, Commercial, Educational and Office buildings	C06	L5
1What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?CO6L3	2	Footings are used in Residential, Commercial, Educational and Office buildings	CO7	L5
1What is the role of transverse reinforcement in columns? What are the codal provisions to design the transverse reinforcement?CO6L32Design the reinforcement for a column of size 300 x 500mm to support a factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details.CO6L33Explain the different between short columns and long columns. Why is reduction coefficient applied to long column?CO6L3	d	Poviow Questions		
provisions to design the transverse reinforcement?Image: Constraint of the co				-
factored load of 500kN and a factored moment of 200 kNm. Assume M20 and Fe415. Sketch the reinforcement details. 3 Explain the different between short columns and long columns. Why is CO6 L3 reduction coefficient applied to long column?	1			
3 Explain the different between short columns and long columns. Why is CO6 L3 reduction coefficient applied to long column?	2	factored load of 500kN and a factored moment of 200 kNm. Assume M20 and		L3
4 Design a isolated forting for a rectangular column of 300mm x 500mm CO7 L5	3	Explain the different between short columns and long columns. Why is	CO6	L3
	4	Design a isolated forting for a rectangular column of 300mm x 500mm	C07	L5

Copyright ©2017. cAAS. All rights reserved.

	supporting an axial load of 15001(N factored. Assume SBC of soil as 185 kN/m2. Use M20 and Fe415. Sketch the reinforcement and perform the necessary checks.		
5	A corner column 400 [*] 400 mm, is subjected to the factored loads Pt, = 1300 Kn, Mu. = 190 kN-m and Muy = 110 kN-m. Design the reinforcement in the column, assuming M25 concrete and Fe 415 steel and effective cover of 60 mm. Assume it as short column.	-	L5
6	Design a square footing for a short axially loaded column of size 300 mm * 300 mm carrying 600 kN load. Use M20 concrete and Fe415 steel. SBC of soil is 180 kN/m2. Sketch the details of reinforcement.	CO7	L5
7	Design a footing for a column of size 300mm x 300mm, carrying a load of 1200 kN. Take SBC of sail as 180 kN/m2. Use M20, grade concrete and Fe-415 grade steel. Sketch the reinforcement details.		L5
8	Design the reinforcement in a column of size 400mm x 500mm subjected to an axial load of 2000 kN. The column has unsupported length of 3.3m and is held in position at both the ends, restrained against rotation at one end. Use M-25 grade concrete and Fe-415 grade steel.	-	L5
9	Design the reinforcement for a axially loaded square column of size 450rrim x 450mm to support a load of 1500 kN. Use M20 concrete and Fe415 steel.	CO7	L5
10	column size of 300x400mm has effective length of 3.6m and is subjected to P and Mu = 150 kN-m, about the major axies. Assume the bars on two side, design the column using M25 concrete and Fe415 steel.	CO7	L5
11	Design on Isolated rectangular Footing of uniform depth for the column size of 230mmx300mm supporting an axial service load of 850kN. he safe bearing capacity of soil is 150kN/m2 . Adopt M20 grade concrete and Fe415 grade steel. Sketch the reinforcement details.	-	L5
е	Experiences	-	-
1	•	CO10	L2
2			
3			
4		CO9	L3

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs C	Code:	15CV51	Sem:	V	Marks:	15	Time:	75 minute	S	
Cour			RC Structur	al Elements				, .		
-	-		Answer a	ny ONE FUL	L question f	rom each I	Module	Marks	СО	Level
1		data. Column siz kn-mt. Ass subjected t eccentricity	te is 400×6 suming M20 to biaxial be y are less th	600 mm, P _u	=2000KN, crete and F iming mom es given ab	M _{ux} =160 k e415 stee ents due l		ing 15	CO6	L5
2		unsupporte	ed height	of the colum	nn is 5m.		2000KN. If the	15	CO6	L5
		Width of co	olumn= 300		25 concrete		h the details. 5 steel. Use limi	t		
		A			0	6.0				
3		transfers a The bearing	dead load g capacity	of soil is 120	nd a live lo kn/m². M2	ad of 860 20 grade c	m diameter KN to the footin of concrete and are footing to	U	CO7	L5

support the column.			
A rectangular column450×600 mm transfer a dead load of 880 KN & a live load of 1420 KN without any movement & there is no overburden. The safe bearing capacity of soil is 140 KN/m ² . M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a rectangular footing to support the column.	15	CO7	L5
Answer any ONE FULL question from each Module	Marks	СО	Level
Determine the reinforcement required for a short column for the following data. Column size is 400×600 mm, Pu=2000KN, Mux=160 kn-mt, Muy=120 kn-mt. Assuming M20 grade concrete and Fe415 steel. The column is subjected to biaxial bending. Assuming moments due to minimum eccentricity are less than the values given above. Also sketch the reinforcement details. Use SP16 charts.	15	CO6	L5
A rectangular column is subjected to a service load of 2000KN. If the unsupported height of the column is 5m. Design the column. Columns are hinged at ends. Sketch the details. Width of column= 300mm. Use M25 concrete and Fe415 steel. Use limit state method of design. Use SP16 charts.	15	CO6	L5
A column 450×450 mm in size with 8 steel bars of 18mm diameter transfers a dead load of 620 KN and a live load of 860 KN to the footing. The bearing capacity of soil is 120 kn/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a square footing to support the column.	15	CO7	L5
A rectangular column450×600 mm transfer a dead load of 880 KN & a live load of 1420 KN without any movement & there is no overburden. The safe bearing capacity of soil is 140 KN/m ² . M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a rectangular footing to	15	CO7	L5
	 load of 1420 KN without any movement & there is no overburden. The safe bearing capacity of soil is 140 KN/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a rectangular footing to support the column. Answer any ONE FULL question from each Module Determine the reinforcement required for a short column for the following data. Column size is 400×600 mm, Pu=2000KN, Mux=160 kn-mt, Muy=120 kn-mt. Assuming M20 grade concrete and Fe415 steel. The column is subjected to biaxial bending. Assuming moments due to minimum eccentricity are less than the values given above. Also sketch the reinforcement details. Use SP16 charts. A rectangular column is subjected to a service load of 2000KN. If the unsupported height of the column is 5m. Design the column. Columns are hinged at ends. Sketch the details. Width of column= 300mm. Use M25 concrete and Fe415 steel. Use limit state method of design. Use SP16 charts. A column 450×450 mm in size with 8 steel bars of 18mm diameter transfers a dead load of 620 KN and a live load of 860 KN to the footing. The bearing capacity of soil is 120 kn/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a square footing to support the column. 	Load of 1420 KN without any movement & there is no overburden. The safe bearing capacity of soil is 140 KN/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a rectangular footing to support the column.MarksMaswer any ONE FULL question from each ModuleMarksDetermine the reinforcement required for a short column for the following data.MarksColumn size is 400×600 mm, Pu=2000KN, Mux=160 kn-mt, Muy=120 kn-mt. Assuming M20 grade concrete and Fe415 steel. The column is subjected to biaxial bending. Assuming moments due to minimum eccentricity are less than the values given above. Also sketch the reinforcement details. Use SP16 charts.15A rectangular column is subjected to a service load of 2000KN. If the unsupported height of the column is 5m. Design the column. Columns are hinged at ends. Sketch the details. Width of column 300mm. Use M25 concrete and Fe415 steel. Use limit state method of design. Use SP16 charts.15A column 450×450 mm in size with 8 steel bars of 18mm diameter transfers a dead load of 620 KN and a live load of 860 KN to the footing. The bearing capacity of soil is 120 kn/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a square footing to support the column.15A rectangular column450×600 mm transfer a dead load of 880 KN & a live load of 1420 KN without any movement & there is no overburden. The15	load of 1420 KN without any movement & there is no overburden. The safe bearing capacity of soil is 140 KN/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a rectangular footing to support the column.MarksCOConcrete and ModuleMarksCODetermine the reinforcement required for a short column for the following data. Column size is 400×600 mm, Pu=2000KN, Mux=160 kn-mt, Muy=120 kn-mt. Assuming M20 grade concrete and Fe415 steel. The column is subjected to biaxial bending. Assuming moments due to minimum eccentricity are less than the values given above. Also sketch the reinforcement details. Use SP16 charts.15CO6A rectangular column is subjected to a service load of 2000KN. If the unsupported height of the column is 5m. Design the column. Columns are hinged at ends. Sketch the details. Width of column- 300mm. Use M25 concrete and Fe415 steel. Use limit state method of design. Use SP16 charts.15CO7A column 450×450 mm in size with 8 steel bars of 18mm diameter transfers a dead load of 620 KN and a live load of 860 KN to the footing. The bearing capacity of soil is 120 kn/m². M20 grade of concrete and HYSD steel bars of Fe 415 shall be used. Design a square footing to support the column.15CO7A rectangular column450×600 mm transfer a dead load of 880 KN & a live load of 1420 KN without any movement & there is no overburden. The15CO7

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

				Mo	odel Assignmen	t Questic	ons			
Crs C	ode:	15CV51	Sem:	V	Marks:	10	Time:	90 - 120	minute	S
Cours	se:	Design (Of RC Struc	tural Elen	nents					
Note:	Each	student	to answer 2	2-3 assign	ments. Each ass	signment	carries equal m	ark.		
SNo		USN		A	ssignment Des	cription		Marks	СО	Level
1				codal	ransverse reinfo provisions to		in columns? Wh the transver		CO6	L5
2			support a	factored	load of 500kN	and a fa	te 300 x 500mm ctored moment the reinforceme	of	CO6	L5
3							lumns and lor d to long columr		CO7	L5
4			500mm su SBC of so	upporting bil as 185	an axial load of	15001(N 20 and	olumn of 300mm factored. Assun Fe415. Sketch tl necks.	ne	CO7	L5

5	A corner column 400 * 400 mm, is subjected to the factored loads Pt, = 1300 kN, Mu. = 190 kN-m and Muy = 110 kN-m Design the reinforcement in the column, assuming M25 concrete and Fe 415 steel and effective cover of 60 mm Assume it as short column.		CO6	L5
6	Design a square footing for a short axially loaded column o size 300 mm * 300 mm carrying 600 kN load. Use M20 concrete and Fe415 steel. SBC of soil is 180 kN/m2. Sketch the details of reinforcement.		CO7	L5
7	Design a footing for a column of size 300mm x 300mm carrying a load of 1200 kN. Take SBC of sail as 180 kN/m2. Use M20, grade concrete and Fe-415 grade steel. Sketch the reinforcement details.	9	CO6	L5
8	Design the reinforcement in a column of size 400mm 500mm subjected to an axial load of 2000 kN. The column has unsupported length of 3.3m and is held in position at both the ends, restrained against rotation at one end. Use M-25 grade concrete and Fe-415 grade steel.	5	CO6	L5
9	Design the reinforcement for a axially loaded square column of size 450rrim x 450mm to support a load of 1500 kN. Use M20 concrete and Fe415 steel.		CO6	L5
10	column size of 300x400mm has effective length of 3.6m and is subjected to P and Mu = 150 kN-m, about the major axies Assume the bars on two side, design the column using M24 concrete and Fe415 steel.		CO6	L5
11	Design on Isolated rectangular Footing of uniform depth fo the column size of 230mmx300mm supporting an axia service load of 850kN. he safe bearing capacity of soil is 150kN/m2 . Adopt M20 grade concrete and Fe415 grade stee Sketch the reinforcement details.	l S	CO7	L5

F. EXAM PREPARATION

1. University Model Question Paper

Cours	se:	Design Of RC Structural Elements			Month /	′ Year	Dec/1	9
Crs C	ode:	15CV51 Sem: V M	1arks:	100	Time:		180 mi	nutes
-	Note	Answer all FIVE full questions. All question	s carry equ	al marks.		Marks	СО	Level
1		Differentiate between working stress met RCC design	hod and lir	mit state me	ethod of	5	CO1	L2
		Explain the following i)Partial safety factor for loads and material (b)ii)Characteristics load iii)Characteristic strength	S			6	CO1	L1
		Calculate the crack width directly under location of max bendingmoment in the be- cover on comp. side (d')=37.5mm,2 (c)Reinforcement -3 bars of 20mm dia bars	am of b=300	omm, D=600)mm, off	-	CO1	L3
	-	OR	motor for		force		CO1	
-		Derive the expression for stress block para u and Tensile force T u and locate a depth top					CO1	L2
		Briefly explain under reinforced, over reir with sketch.	nforced and	balanced	sections	4	CO1	L2
		A reinforced concrete beam of cross sec reinforced with 3 barsof 20mm HYDS bars with an effective cover of 50mm.comput beam at mid span, consisting of ser concentrated load of 25kN at the center	of Fe415 gr e short ter vice load	rade on tens m deflection of 20kN/n	ion side n of the n and		CO2	L3

supported over a span of 5m. Use M20 grade concrete and Fe415steel.			
5,7	6	CO3	L3
 A singly reinforced beam 250mmx450mm deep up to center of reinforcement Effective cover 50mm Effective span 6m using M20 concrete and Fe500 steel. Determine the central point load that can be supported in addition to self weight. When i)3-16mm dia bars ii) 3-20mm dia bars are used as reinforcement. 	10	CO3	L4
	8	COn	L4
Breadth of the flange=740mm; Effective depth=400mm; Breadth of web=240mm; Tensilereinforcement =5-20Φ; Depth of flange =110mm: Adopt M20 grade concrete and Fe415 grade steel	0	003	<u> </u>
	8	CO4	L4
the centre of the tensile reinforcement. It is reinforced with $2#16\Phi$ as compression reinforcement at an effective coverof 50mm and $4#25\Phi$ as tensile steel. Using M15 concrete and Fe250 steel. Calculate the ultimate moment of resistance of the beam section.			
A rectangular RC beam of size 250mm * 600 mm of effective simply supported span of 7 mhas a support service load of 26.25 kN/m excluding self-weight. The effective cover = 50mm Design the beam for flexure and shear. Check the beam depth for control of deflection (a) using empirical method. Design the stress value for different strain in steel is given below Strain 0.00276 0.0038 Stress (N/mm2) 351.8 360.9	9	CO5	L4
5m to support a serviceload of 8 kN/m . Adopt M20 grade concrete and Fe 415 steel. Design a beam to satisfy thecollapse and serviceability limit	7	CO3	L5
	8	CO3	L5
 A doubly reinforced concrete beam 250 mm wide 500mm deep is required to support 40 kN/m (b) including self-weight with effective span 5m .Effective cover of 50 mm using M20 concrete and Fe 415 steel find steel for flexure and shear 	8	CO3	L5
			L2
			L2
and Fe415 steel. Also (b) check for bond length deflection and shear. Assume corners are held down, bearing 300mm. Sketch the reinforcement details.	8	CO4	L5
	-		
length in tension?			L2
 Design a two way slab 5m x 6m. Live load is 3kN/m . M20 concrete Fe415 steel. Alsocheck for bond length and shear. Assume corners are held down, bearing 300mm. 	6	CO4	L5
	Image: singly reinforced beam and doubly reinforced beam. List the singly reinforced beam 250mmx450mm deep up to center of reinforcement Effective cover 50mm Effective span 6m using M20 concrete and Fe500 steel. Determine the central point load that can be supported in addition to self weight. When 113-16mm dia bars 3) 20mm dia bars are used as reinforcement. OR Determine the moment of resistance of a T-beam for the following data Breadth of the flange-740mm. Effective depth-400mm: Breadth of web-240mm; Tensilereinforcement ±5-20Φ. Depth of flange ±110mm. Adopt M20 grade concrete and Fe415 grade steel A doubly reinforced beam section is 250mm wide and 450mm deep to the centre of the tensile reinforcement. It is reinforced with 2#16Φ as compression reinforcement at an effective coverof 50mm and 4#25Φ as tensile steel. Using M15 concrete and Fe205 steel. Calculate the ultimate moment of resistance of the beam section. A rectangular RC beam of size 250mm '600 mm of effective simply supported span of 7 mhas a support service load of 26.25 KN/m excluding self-weight. The effective cover - 50mm Design the beam for flexure and shear. Check the beam depth for control of deflection (a) using empirical method. Design the stress value for different strain in steel is given below Strain 0.00276 0.0038 A reinforced concrete beam is to be designed over an effective span of 5 m to support 4 service bains for the states. A hall of 16 m '6m supported by beams spaced 4 m C/C thickness of 5 ab is 120 mm UbA/M/m. Design a T beam using M20 Concrete and Fe415 steel for deveceand Fe415 steel find steel for flexure and shear. Takebearing as 500 mm. Also show check for deflection and bhear. Takebearing as 500 mm wide 500mm deep is required to support 40 kN/m.	a Define Singly reinforced beam and doubly reinforced beam. List the situation which requires the adoption of the same. 6 a Singly reinforced beam zgommx450mm deep up to center of reinforcement Effective cover 50mm Effective span 6m using M20 concrete and Fe500 steel. Determine the central point load that can be supported in addition to self weight. When it 3-16mm dia bars are used as reinforcement. 10 a Determine the moment of resistance of a T-beam for the following data Breatth of the flange-z40mm. Effective depth-400mm, Breadth of web-z40mm, Tensiereinforcement -5-200, Depth of flange -110mm Adopt M20 grade concrete and Fe415 grade steel 8 b A doubly reinforced beam section is z50mm wide and 450mm deep to A doubly reinforced beam section is z50mm is door mof effective simply supported span of 7 mhas a support service load of 26.25 kN/m excluding self-weight. The effective cover - 50mm Design the beam for flexure and shear. Check the beam depth for control of deflection (a) using empirical method. Design the stress value for different strain in steel is given below. 9 Strain 0.00276 0.038 7 7 a A hall of 16 m * 6m supported by beams spaced 4 m C/C thickness of 8 stab is 120 mm UDL 4kN/m. Design a T beam as 500 mm. Also show check for deflection and bhord 8 a A hall of 16 m * 6m supported by beams spaced 4 m C/C thickness of 5 mm using M20 concrete and Fe 415 steel for flexure and shear. Takebearing as 500 mm. Also show check for deflection and bond 8 a A hall of 16 m * 6m supported by beams spaced 4 m C/C thickness of 5 m	a Define Singly reinforced beam and doubly reinforced beam. List the situation which requires the adoption of the same. 6 CO3 b A singly reinforced beam 250mmx450mm deep up to center of reinforcement Effective cover 50mm Effective span 6m using M20 concrete and Fe50 steel. Determine the central point load that can be supported in addition to self weight. When il]3-16mm dia bars 10 CO3 ii) 3-20mm dia bars are used as reinforcement. 8 CO3 a Determine the moment of resistance of a T-beam for the following data Breadth of the flange-740mm. Effective depth-400mm. Breadth of web-240mm. Tensilereinforcement -5-20%. Depth of flange =110mm Adopt M20 grade concrete and Fe415 grade steel 8 CO4 b A doubly reinforced beam section is 250mm wide and 450mm deep to the centre of the tensile reinforcement. It is reinforced with 2#16Ф as compression reinforcement at an effective coverof 50mm and 4#25Φ as tensile steel. Using M15 concrete and Fe20 steel. Calculate the uttimate moment of resistance of the beam section. 8 CO4 a A rectangular RC beam of size 250mm. '600 mm of effective simply supported shear. Check the beam depth for control of deflection (a) using empirical method. Design the stress value for different strain in steel is given below 7 CO3 Strain 0.00276 0.0038 7 CO3 7 CO3 a halt of 16 m. '6m supported by beams spaced 4 m C/C thickness of 8 8

	С	Design the middle flight of a open well type stair case to be provided for a stair hall of size3.25m x 3.25m. Size of open well = 1.25m x 1.25m. Floor to floor height = 3.6m. Size o (b) landing at each corner = 1m x 1m. Stair had to be provided along all the four walls of hall.Thickness of stair hall is 230mm. the stair slab is embedded in to the wall by 200mm. The service live load is 3kN/m.		CO5	L5
5	а	What is necessity of transverse reinforcement in columns	3	CO6	L2
	b	Design RCC column having unsupported length 2.75 m to support a load of 2000 KN using M20 concrete and Fe 415 steel		CO6	L5
	С	A square column 400mm sides carries a load of 900kN. Design a footing SBC of soil 100kN/m2. Adopt M20 concrete Fe415 steel. Check the necessary conditions.		CO6	L5
		OR			
	а	i) Explain difference between short column and long column ii) What are the advantages of Providing pedestal to columns	3	CO6	L2
	b	A column 300mm x 400mm is to support a ultimate load of 1200kN and Mu 200kN-m. Find steel using M20 concrete Fe415 steel, assuming effective cover 50mm. Sketch the reinforcement details.		CO6	L5

2. SEE Important Questions

Course:		Design Of RC Structural Elements Month /		Dec/19		
Crs Code:					.80 minutes	
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-		
Mod	-	Important Question	Marks	со	Year	
ule						
1	1	Explain the philosophy and principles of limit state method of RCC desig	jn. 16		2004	
	2	Explain the following :			2004	
		i) Characteristic loads				
		ii) Characteristics strength				
		iii) Partial safety factor for loads				
		iv) Partial safety factor for materials.				
		c. Explain different types of steel used in RCC.				
	3	What is a stress block? Derive from fundamentals the expression for ar			2004	
		of stress block 0.36 tek xu and depth of centre of compressive force fro	m			
		the extreme fibre in compression 0.42 xu.				
	4	what are the different loads to be considered in the design of	an		2007	
		reinforced concrete				
		element?				
		Explain the philosophy and principles of limit state method of design.			2007	
	6	Explain the necessity of adopting partial safety factors for loads a	nd			
		material strength.				
2	1	single reinforced concrete beam 250 x 450 mm deep upto the centre	of 16		2005	
		reinforcement is				
		reinforced with 3-16 mm dia at an effective cover 50 mm, effective spar				
		m, M20 concrete and Fe415 steel. Determine the central point load th	at			
		can be supported in addition to the self weight.				
	-					
	2	Determine the moment of resistance of a T-beam for the following data:			2005	
		Breadth of the flange = 740 mm; Effective depth = 400 mm; Breadth of t	ne			
		web = 240 mm;				
		Area of steel = 5 — 20; Depth of flange = 110 mm; Adopt M20 grad	e			
		concrete and				
	-	Fe415 grade steel.	•		2000	
	3	RC beam 200mm wide by 500mm deep effective is reinforced with 3 n	US		2009	

		-		
		of 16mm dia bars. Find the moment of resistance of the beam. Effective span is 5.0m. If the effective		
		cover is 40mm, find the safe working load as well as superimposed load. Use M25 grade concrete and Fe 415 steel.		
	4	Explain the importance of side face reinforcement. Give the specification		2006
	5	for the same. simply supported rectangular beam of 12m span has an effective depth of		2004
		800mm. The area of reinforcement required to support the loads is designed as 1.6 percent. Check the		
		deflection control of the beam by empirical method if i) Fe 415 grade HYSD bars are used ii) Fe 500 grade bars are used		
3	1	simply supported rectangular beam of 12m span has an effective depth of 800mm. The	16	2006
		area of reinforcement required to support the loads is designed as 1.6 percent. Check the		
		deflection control of the beam by empirical method if i) Fe 415 grade HYSD bars are used ii) Fe 500 grade bars are used.		
	2	Design a singly reinforced concrete beam of clear span 5m to support a design working live load of 10 kN/m. Adopt M20 grade concrete and Fe 415 HYSD bars. Also show the detailing of reinforcements.		2006
	3	A Tee beam slab floor of an office comprises a slab 150 mm thick spanning between ribs of		2007
		250 mm wide spaced at 3.2 m centre to centre. Clear span of beam = 7.70 m. The beam is		
		600 mm deep including slab and simply supported over walls of 300 mm wide. Live load on		
		floor = 4 kN/m2, Floor and ceiling finish = 0.75 kN/m2. The beam also support a partition		
		wall which transmits a load of 12 kN/m. Design one of the intermediate beam for flexure		
		and shear. Also check for beam for deflection control. Assume effective cover = 50 mm.		
	4	M20 grade and Fe415 steel. A rectangular section 200x450mm overall is reinforced with 3 — 16mm dia		2004
	4	of an effective depth 420mm. Two hanger bars 12mm dia effective span 5m. The beam		2004
		support a load of 10kN/m. Calculate short term deflection and long term deflection using		
		M20 concrete and Fe415 steel.		
	5	Adoubly reinforced concrete beam 250mm wide 500mm deep is required to support		2004
		40kN/m including self wt effective span is 5m. Effective cover 50mm, using M20 concrete		
		Fe 415 steel, find steel for flexure and shear		
4	1	esign a two way slab for a room of internal dimensions 4m x 5m, supported on walls of	16	2004
		300 mm thickness with one corner held down. Two adjacent edges of the slab are		
		discontinuous. Thickness of slab = 150 mm. The slab is to support a live load of 3 kN/m2		
		and floor finish of 1 kN/m2. Sketch the reinforcement details M20, Fe415		

		grade.		
	2	Distinguish between one way and two way slab.		2004
	3	Design a dog legged stair for an office building in a room measuring 2.8m x 5.8m . Clear		2006
		vertical distance between the floor is 3.6 m. The width of flight is to be 1.25 m. Assume		
		imposed load of 3 kN/m2 . Use M20 concrete and Fe415 grade steel. Assume that the stairs		
		are supported on 230 mm at the outer edges of landing slabs. Sketch the reinforcement details.		
	4	Design RC slab rectangular panel discontinuous and restrained all-round, has an effective		2004
		spans of 3.5m x 5.0m. Live load is 2 kN/m2 and floor finish is 0.6 kN/m2. Use M20 grade		
		concrete and Fe-415 grade steel. All corners are held down.		
	5	The main stair of an office building has to be located in a stair case room measuring 2.5m ${\rm x}$		2007
		5.6m. The vertical distance between the floors is 3.75m. Live load on stairs 5 kN/m2. Design		
		the flight slab using M20 and Fe 415 if flight slab and landing slab span in the same direction.		
5	1	column of size 300 mm x 400 mm is subjected to an axial factored load of	16	2009
Ũ		1200 kN and a	-	
		factored moment of 250 kN-m. Design the column using M25 concrete and Fe 415 steel.		
		Provide 40mm cover. Use of SP-16 is allowed.		
	2	Design short column (rectangular) subjected to an axial load of 3000 kN. Take effective		2007
		length = 3.0m. Use M20 grade concrete Fe 415 grate steel. Check for minimum eccentricity in the direction.		
	3	A rectangular column of size 350mm x 550mm carries a live load of 1800 kN. The safe		2007
		bearing capacity of soil is 200kN/m2 . Using M25 concrete and Fe 415 steel. Design a rectangular footing to support the column. Sketch the details of reinforcement.		
	4	Design a column 4 m long restrained in position and direction at both		2004
		ends to carry an axial load of 1600 kN. Use M-20 grade concrete and Fe-415 grade steel. Sketch the reinforcement details		
	5	Design an isolated footing of uniform thickness for an RC square column,		2005
		of size 500mm x 500mm bearing a vertical load of 600 kN. The safe bearing capacity of the soil		
		may be taken as 120 kN/m2 . Use M-20 grade concrete and Fe-415 grade steel. Sketch the reinforcement details.		